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INTRODUCTION
The catalytic selective oxidation of methanol is a fine way to afford 
valuable products such as dimethoxymethane (DMM), methylformate 
(MF) or formaldehyde.

In addition, as methanol conversion involves oxidation and dehydration/ 
condensation reactions, the reaction itself is a very relevant way to 
investigate both redox and acidic properties of a catalyst. Raman spec-
tro-copy makes it possible to analyze the structure of the active phase 
with a short collection time and suitable spatial resolution. Moreover, 
in some favorable cases, the nature of adsorbates, intermediates or 
poisons can also be observed. Time and space resolution make Raman 
spectroscopy a technique of choice in the operando and in situ study of 
the catalyst under working conditions.,
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Figure 2. Oxidation of Methanol.
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EXPERIMENTAL
The catalysts were prepared by wetness impregna-
tion of an ammonium heptamolybdate solution on  
a commercially available anatase provided by  
Sachtleben™ which specific area is fixed to 50m2/g 
by the purchaser. The concentration of the impreg-
nation solution was adjusted in order to reach a molyb-
denum loading corres-onding to 5%wt MoO3/TiO2.

Micro-Raman spectra were recorded in working 
conditions at different temperatures and under 
selected atmospheres using the 531.95 nm second 
harmonic line of a Nd:YAG laser. A 50X microscope 
objective was use to focus the excitation beam  
(13.6 mm spot) and collect the scattered light at the 
same time. The scattered light was collected through 
a confocal hole (150 mm) by a nitrogen cooled CCD 
(Labram Infinity, Jobin Yvon).

The in situ analysis was allowed by using an  
environmental spectroscopic chamber developed by 
Harrick equipped with a new planar dome including 
a pure silica window to permit Raman measure-
ments in the UV-visible range.

The methanol was introduced in the spectroscopic 
cell by means of a He flow bubbling in a saturator 
equipped with a condenser which temperature is  
set to 11°C.

RESULTS AND DISCUSSION
The 5%wt MoO3/TiO2 catalyst was activated in the 
environmental spectroscopic cell by a 3 hours heat 
treatment under pure oxygen flow at 350°C. This 
step has been reported to enhance dehydration  
and activation of the redox sites. The blue line in 
Figure 3 is the Raman spectrum of the activated  
material under pure O2 flow without contact to air 
after activation treatment.

The influence of the reactive mixture on the struc-
ture of the active phase has been explored by in situ 
Raman spectroscopy directly performed on the activat-
ed catalysis. The Raman spectra recorded upon heat-
ing in pure MeOH/He flow are presented in Figure 3.

Figure 3. In situ Raman spectra of the supported  
5% MoO3 catalyst upon MeOH/He flow.

Exposure to pure methanol carried by helium led 
to significant changes in the Raman features of the 
active phase: The intensity of the line observed at 
950 cm-1 vanishes gradually with increasing tem-
perature. This trend, already observed in other cata-
lytic systems was connected to effective reduction of 
MoVI to MoV . This supports the reasonable methanol 
conversion (15% at 240°C) to MF (yield: 5%) and 
formaldehyde (yield: 10%) observed for this catalyst 
in plug flow reactor (feed: MeOH/O2). Introduction of 
oxygen in the reactive mixture led to reverse spec-
tral changes so about half the initial intensity of the 
Raman peak at 955 cm-1 is recovered (not shown). 

Insights on the nature of adsorbates formed upon 
methanol flow can be afforded by Raman spectrosco-
py as well. Thus, the in situ Raman spectra pre-
sented in Figure 4, peaks at 2855 and 2957 cm-1 and 
respectively assigned to the symmetric and antisym-
metric stretching modes of CH3 are observed togeth-
er with new features at 1444 and 1577 cm-1 upon 
pure MeOH/He flow (Figure 3a). These last bands 
are not observed any more when introducing oxygen 
in the feed whereas CH3 stretching vibrations are 
still detected upon MeOH/O2 flow. Assignment of the 
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lines detected around 1500 cm-1 is not straightforward, 
however, based on previous studies4, the latter can 
be due to COO vibration in formate adsorbed inter-
mediates. Introduction of O2 in the reactive mixture 
(Figure 3b) led to a complete loss of the presumed 
formate vibration bands, indeed, the remaining line 
observed around 1660 cm-1 is a harmonic mode of 
anatase. This could support a van Krevelen - type 
mechanism, involving adsorption of methanol on the 
oxomolybdate phase, and subsequent release of the 
oxidation reaction products. Interestingly, the CH3 
stretching modes are still observed, with a clear dou-
bling which is not yet completely elucidated. Upon 
pure oxygen flow, all the adsorbates are removed 
from the catalyst’s surface.
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Figure 4. In situ Raman spectra recorded at  
240°C upon a) pure MeOH/He flow b) mix  
MeOH/O2 c) pure O2.
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