

Finisterre[™] SPE Cartridges

Finistere Triviterenter tiviterenter tivi

Technical Information of Finisterre[™] SPE Cartridges

Teknokroma introduces in the market the line of Finisterre™ Solid Phase Extraction columns for a fast and efficient sample clean-up and concentration prior to analysis through GC, HPLC, and/or other instrumental methods.

SPE method concentrates and purifies analytes from solution by sorption onto a disposable solid phase cartridge, followed by elution of the analyte with an appropriate solvent for instrumental analysis.

The Finisterre™ SPE columns improve sample purity, quantification, and HPLC column life.

Our unic packing process **Filling PRIM™** guarantees unsurpassed accuracy by strictly monitoring the amount of packing in each individual column.

The dosification control by weight, column by column, using an automated specially designed machine, permits to assure results with high accuracy and less variability.

The irregular silica shape with an average particle size of 50 μm and no fines, avoid silica contamination in your final product. The pore diameter used in the Finisterre™ packing is 60Å.

The very tight particle size distribution used to manufacture SPE Finisterre™ packing provides a very good separation, as the sample and solvent flow uniformly through the sorbent bed, incrementing the contact with the packing.

FinisterreTM SPE columns consist of molded high purity polypropylene bodies with two 20 μ m polyethylene frits that contain the packing material.

FinisterreTM SPE columns are equipped with male Luer-tips and designed for elution using either a syringe, a filter flask or a vacuum manifold.

Finisterre[™] SPE products are manufactured in compliance with ISO 9001 and technical procedures and tested according international standards ISO 17025.

Teknokroma FinisterreTM SPE cartridges are available in four sizes (1, 3, 6 and 12 mL) and different packing materials (C18, C8, C4, C2, PH, SI, CN, NH₂, DIOL, FlorisilTM, SAX, SCX). Sorbent weights ranged from 100 mg to 1 g.

Samples and raw data of all Finisterre™ SPE cartridges batches are stored during 5 years from production for reference.

Finisterre[™] C18 SPE Columns

Is the traditional matrix for reversed-phase chromatography. The high loading provides the highest degree of hydrophobicity

Retention Mechanism: Reverse phase, one of the most hydrophobic phases

Functional Group: Polymerically bonded octadecyl C18 endcapped. High Capacity C18 Endcapped: yes Carbon Load: 17.0 % Sílica Base: Irregular Shape Average Particle Size: 50 µm Pore Diameter: 60 Å Hardware: Polypropylene Frit: Polyethylene 20 µm porosity

Applications

Isolation of hydrophobic species from solution Compounds retained are Non- polar to moderately polar in a polar matrix.

- Drugs in serum, plasma and urine
- Desalting of peptides
- Organic acids in wine
- · Pesticides in water by trace enrichment.

Finisterre™ C18 High Capacity C18 are Equivalent to:

Baker C18, Macherey –Nagel C18–ec, Macherey –Nagel C18– ecf, Phenomenex C 18-E,Supelco DSC-18, Supelco ENVI-18, Varian C 18, Waters C18, Whatman ODS-5

Cat.No	Description	pk
TR-F0340	00 Finisterre SPE Columns C18/17% 100mg/1ml	100
TR-F0340	02 Finisterre SPE Columns C18/17% 200mg/3ml	50
TR-F0340	04 Finisterre SPE Columns C18/17% 500mg/3ml	50
TR-F0340	06 Finisterre SPE Columns C18/17% 500mg/6ml	30
TR-F0340	08 Finisterre SPE Columns C18/17% 1000mg/6ml	30
TR-F0340	10 Finisterre SPE Columns C18/17% 1000mg/12ml	20
TR-F0340	12 Finisterre SPE Columns C18/17% 2000mg/12ml	20

Finisterre[™] C8 SPE Columns

Retention Mechanism: Reverse phase. Functional Group: Octyl (C8) Endcapped: yes Carbon Load: 8.5 % Sílica Base: Irregular Shape Average Particle Size 50 µm Pore Diameter: 60 Å

Hardware: Polypropylene

Frit: Polyethylene 20 μm porosity

Applications

For compounds retained too strongly on C18

Cat.No	Description		pk
TR-F03402	20 Finisterre SPE Columns C8	100mg/1ml	100
TR-F03402	22 Finisterre SPE Columns C8	200mg/3ml	50
TR-F03402	24 Finisterre SPE Columns C8	500mg/3ml	50
TR-F03402	26 Finisterre SPE Columns C8	500mg/6ml	30
TR-F03402	28 Finisterre SPE Columns C8	1000mg/6ml	30
TR-F03403	30 Finisterre SPE Columns C8	1000mg/12ml	20
TR-F03403	32 Finisterre SPE Columns C8	2000mg/12ml	20

Finisterre[™] C2 SPE Columns

Finisterre C2

Retention Mechanism: Reverse phase. Functional Group: Ethyl (C2) Endcapped: yes Carbon Load: 5.5 % Sílica Base: Irregular Shape Average Particle Size 50 µm Pore Diameter: 60 Å Hardware: Polypropylene Frit: Polyethylene 20 µm porosity

Applications

Antiepileptics from plasma			
Description		pk	
Finisterre SPE Columns C2	100mg/1ml	100	
Finisterre SPE Columns C2	200mg/3ml	50	
Finisterre SPE Columns C2	500mg/3ml	50	
Finisterre SPE Columns C2	500mg/6ml	30	
Finisterre SPE Columns C2	1000mg/6ml	30	
Finisterre SPE Columns C2	1000mg/12ml	20	
Finisterre SPE Columns C2	2000mg/12ml	20	
	Finisterre SPE Columns C2 Finisterre SPE Columns C2	Description Finisterre SPE Columns C2 100mg/1ml Finisterre SPE Columns C2 200mg/3ml Finisterre SPE Columns C2 500mg/3ml Finisterre SPE Columns C2 500mg/6ml Finisterre SPE Columns C2 1000mg/6ml Finisterre SPE Columns C2 1000mg/6ml	

Finisterre[™] PH SPE Columns

Retention Mechanism: Reverse phase. Functional Group: Phenyl (PH) Endcapped: yes Carbon Load: 3.8 % Sílica Base: Irregular Shape Average Particle Size 50 µm Pore Diameter: 60 Å Hardware: Polypropylene

Applications

Choose for highly aromatic compounds.

Cat.No I	Description		pk
TR-F034080	Finisterre SPE Columns PH	100mg/1ml	100
TR-F034082	Finisterre SPE Columns PH	200mg/3ml	50
TR-F034084	Finisterre SPE Columns PH	500mg/3ml	50
TR-F034086	Finisterre SPE Columns PH	500mg/6ml	30
TR-F034088	Finisterre SPE Columns PH	1000mg/6ml	30
TR-F034090	Finisterre SPE Columns PH	1000mg/12ml	20
TR-F034092	Finisterre SPE Columns PH	2000mg/12ml	20

Finisterre[™] CN SPE Columns

 Retention Mechanism: Normal phase -weak/moderate nonpolar with aqueous matrix, or polar with non polar organic matrix

 Functional Group: Cyanopropyl (CN)

 Endcapped: yes

 Carbon Load: 4.0 %

 Sílica Base: Irregular Shape

 Average Particle Size 50 µm

 Pore Diameter: 60 Å

 Hardware: Polypropylene

 Frit: Polypropylene 20 µm porosity

Applications

Compounds retained are polar compounds in a non-polar matrix

- Analytes in aqueous or organic solvents
- Drugs and metabolites in physiological fluids.

Cat.No I	Description		pk
TR-F034100	Finisterre CN SPE Columns	100mg/1ml	100
TR-F034102	Finisterre CN SPE Columns	200mg/3ml	50
TR-F034104	Finisterre CN SPE Columns	500mg/3ml	50
TR-F034106	Finisterre CN SPE Columns	500mg/6ml	30
TR-F034108	Finisterre CN SPE Columns	1000mg/6ml	30
TR-F034110	Finisterre CN SPE Columns	1000mg/12ml	20
TR-F034112	Finisterre CN SPE Columns	2000mg/12ml	20

Finisterre[™] NH₂ SPE Columns

Retention Mechanism: Weak anion exchange with aqueous matrix, normal phase with non-polar organic matrix. Functional Group: Aminopropyl (NH₂) Endcapped: no Carbon Load: 5.0 % Sílica Base: Irregular Shape Average Particle Size 50 μm Pore Diameter: 60 Å Hardware: Polypropylene Frit: Polypropylene 20 μm porosity

Applications

Compounds retained are polar compounds in a non-polar matrix

Cat.No	Description		pk
TR-F0341	40 Finisterre SPE Columns NH2	100mg/1ml	100
TR-F0341	42 Finisterre SPE Columns NH2	200mg/3ml	50
TR-F0341	44 Finisterre SPE Columns NH2	500mg/3ml	50
TR-F0341	46 Finisterre SPE Columns NH2	500mg/6ml	30
TR-F0341	48 Finisterre SPE Columns NH2	1000mg/6ml	30
TR-F0341	50 Finisterre SPE Columns NH2	1000mg/12ml	20
TR-F0341	52 Finisterre SPE Columns NH2	2000mg/12ml	20

Finisterre[™] DIOL SPE Columns

Retention Mechanism: Normal phase Functional Group: DIOL (2OH) Endcapped: no Carbon Load: 6.0 % Sílica Base: Irregular Shape Average Particle Size 50 μm Pore Diameter: 60 Å

Applications

Compounds retained are polar compounds in a non-polar matrix

- Analytes in aqueous or organic solvents
- Drugs and metabolites in physiological fluids

Cat.No	Description		pk
TR-F034180	Finisterre Diol SPE Columns	100mg/1ml	100
TR-F034182	2 Finisterre Diol SPE Columns	200mg/3ml	50
TR-F034184	Finisterre Diol SPE Columns	500mg/3ml	50
TR-F034186	5 Finisterre Diol SPE Columns	500mg/6ml	30
TR-F034188	3 Finisterre Diol SPE Columns	1000mg/6ml	30
TR-F034190	Finisterre Diol SPE Columns	1000mg/12ml	20
TR-F034192	2 Finisterre Diol SPE Columns	2000mg/12ml	20

Finisterre[™] Florisil SPE Columns

Retention Mechanism: Normal phase Functional Group: Florisil ® (FLO) Base: Magnesium Silicate Average Particle Size 75-100 µm Pore Diameter: 85 Å Hardware: Polypropylene Frit: Polypropylene 20 µm porosity

Applications

Compounds retained are polar compounds in a non-polar matrix Isolation of low to moderate polarity species from non-aqueous solution

- · Pesticides in food and feeds
- · Polychlorinated biphenyls in transformer oil

Clean up of pesticides from soil extraction and food residue

Cat.No [Description		pk
TR-F034160	Finisterre Frorisil SPE Column	100mg/1ml	100
TR-F034162	Finisterre Frorisil SPE Column	200mg/3ml	50
TR-F034164	Finisterre Frorisil SPE Column	500mg/3ml	50
TR-F034166	Finisterre Frorisil SPE Column	500mg/6ml	30
TR-F034168	Finisterre Frorisil SPE Column	1000mg/6ml	30
TR-F034170	Finisterre Frorisil SPE Column	1000mWg/12m	1 20
TR-F034172	Finisterre Frorisil SPE Column	2000mWg/12m	1 20

Finisterre[™] Florisil/P SPE Columns

Retention Mechanism: Normal phase Functional Group: Florisil ® (FLO) Base: Magnesium Silicate Average Particle Size 100-200 µm Pore Diameter: 85 Å Hardware: Polypropylene Frit: Polypropylene 20 µm porosity

Applications

Compounds retained are polar compounds in a non-polar matrix Isolation of low to moderate polarity species from non-aqueous solution

- · Pesticides in food and feeds
- · Polychlorinated biphenyls in transformer oil
- · Clean up of pesticides from soil extraction and food residue

Cat.No D	Description	pk
TR-F034161	Finisterre Frorisil/P SPE Column 100mg/1ml	100
TR-F034163	Finisterre Frorisil/P SPE Column 200mg/3ml	50
TR-F034165	Finisterre Frorisil/P SPE Column 500mg/3ml	50
TR-F034167	Finisterre Frorisil/P SPE Column 500mg/6ml	30
TR-F034169	Finisterre Frorisil/P SPE Column 1000mg/6ml	30
TR-F034171	Finisterre Frorisil/P SPE Column 1000mWg/12m	20
TR-F034173	Finisterre Frorisil/P SPE Column 2000mWg/12m	20

Finisterre[™] Si SPE Columns

Retention Mechanism: Normal phase, polar neutral phase Functional Group: Silica (Si) Base: Silica Average Particle Size 50 µm Pore Diameter: 60 Å Hardware: Polypropylene Frit: Polypropylene 20 µm porosity

Applications

Isolation of low to moderate polarity species from non-aqueous solution.

Compounds retained are Polar compounds in a non-polar matrix • Lipid classification

- Separation of plant pigments
- Removal of fat soluble vitamins
- · Clean up of pesticides from soil extraction and food residue

Cat.No	Description		pk
TR-F034120	Finisterre SPE Columns Silica	100mg/1ml	100
TR-F034122	Prinisterre SPE Columns Silica	200mg/3ml	50
TR-F034124	Finisterre SPE Columns Silica	500mg/3ml	50
TR-F034126	Finisterre SPE Columns Silica	500mg/6ml	30
TR-F034128	Finisterre SPE Columns Silica	1000mg/6ml	30
TR-F034130	Finisterre SPE Columns Silica	1000mg/12ml	20
TR-F034132	Prinisterre SPE Columns Silica	2000mg/12ml	20

Finisterre[™] SAX SPE Columns

Retention Mechanism: Anion exchange Functional Group: Tetramethyl ammonium Base: Silica Counter Ion: Acetate Average Particle Size 50 µm Hardware: Polypropylene Frit: Polypropylene 20 µm porosity

Finisterre SAX

Applications

Retains (-) charged compounds

Cat.No I	Description		pk
TR-F034200	Finisterre SAX SPE Columns	100mg/1ml	100
TR-F034202	Finisterre SAX SPE Columns	200mg/3ml	50
TR-F034204	Finisterre SAX SPE Columns	500mg/3ml	50
TR-F034206	Finisterre SAX SPE Columns	500mg/6ml	30
TR-F034208	Finisterre SAX SPE Columns	1000mg/6ml	30
TR-F034210	Finisterre SAX SPE Columns	1000mg/12ml	20
TR-F034212	Finisterre SAX SPE Columns	2000mg/12ml	20

Finisterre[™] SCX SPE Columns

Retention Mechanism: Cation exchange Functional Group: Benzene sulfonic acid Base: Silica Counter Ion: Hydrogen Exchange Capacity: 0.24 meq/100 mg Average Particle Size 50 µm Hardware: Polypropylene Frit: Polypropylene 20 µm porosity

Applications

Retains (+) charged compounds

Cat.No	Description		pk
TR-F034220	Finisterre SCX SPE Columns	100mg/1ml	100
TR-F034222	Finisterre SCX SPE Columns	200mg/3ml	50
TR-F034224	Finisterre SCX SPE Columns	500mg/3ml	50
TR-F034226	Finisterre SCX SPE Columns	500mg/6ml	30
TR-F034228	Finisterre SCX SPE Columns	1000mg/6ml	30
TR-F034230	Finisterre SCX SPE Columns	1000mg/12ml	20
TR-F034232	Finisterre SCX SPE Columns	2000mg/12ml	20

Note: Customs configurations about Finisterre SPE columns are aviable, contact with us for further information

Finisterre[™] SPE columns are simple to use and alow four-steps sample preparation

- 1. Conditioning
- 2. Sample Application
- 3. Washing
- 4. Elution

The capacity of SPE columns are defined as the amount of analyte that a packing bed will retain from a sample matrix.

There are some variables that affect capacity, basicaly: sample matrix, analyte, structure and other compound than compete with the analyte. But in general, with 60 Å bonded silica phases will retain approximately 1 % of their bed weigth.

For example, a 200 mg bed will retain approximately 2 mg of all compounds in a sample that have an affinity for the sorbent. But the best system to determine the capacity for an SPE column is experimentally.

1. Conditioning

The conditioning wets the packing surface, making the packing functional group fully accesible to the sample. In general for 100 mg of packing you can pass 2 ml of two solvent, generaly metanol followed of water in reverse phase. In normal phase are usually conditioned with the solvent that is weaker than the sample matrix.

It is important that the tube should not be dried before adding the sample.

2. Sample application

A general rule use a sample volume equal to half the tube volume, for example 1 ml for 200 mg tubes.

The flow rate of elution of sample about 1 ml/min. for 100 mg tubes, 2 ml /min. for 200 mg tubes, and 3 ml/min. for 500 mg tubes.

3. Washing

Select a wash solvent that has the same, or slightly greater, elution strength as the sample matrix.

Wash solvents should remove weakly retained interferences without being strong enough to elute the analyte.

4. Elution

Select a solvent with more elution strength than the sample matrix.

As standard use $250 \ \mu$ I of solvent for 100 mg of packing, in general the solvents use for elution should be strong enough to completely elute an analyte in a small volume 1 or 2 ml.

Attention should be paid to solvent strength relative to the packing material.

Finisterre OA™ HLB Finisterre OA[™] HLB

Description:

Finisterre OA[™] HLB is a wettable copolymer presenting a Hydrophobic-Lipophilic Balance (HLB) permitting a strong retention for neutral, acidic and basic compounds and a high stability in organic silvents.

Particle Size: 40 μm Pore Diameter: 110 Å Surface Area: 850 m²/g pH Stability: 0 to 14

Applications

- Drugs & metabolites in biological fluids
- · API from tablets, creams, in waste water & drinking water
- Environmental analysis: trace of PAHs, pesticides, herbicides, phenols & PCB in water
- Antibiotics and pesticides in food & beverage

Cat.No	Description	pk
TR-FB034	I300 Finisterre OA™ HLB SPE Columns 30mg/1ml	100
TR-FB034	I302 Finisterre OA™ HLB SPE Columns 60mg/3ml	50
TR-FB034	I304 Finisterre OA™ HLB SPE Columns 100mg/6ml	30
TR-FB034	I306 Finisterre OA™ HLB SPE Columns 200mg/6ml	30
TR-FB034	I308 Finisterre OA™ HLB SPE Columns 500mg/6ml	30

Finisterre OA™ SCX

Description:

Finisterre OATM SCX is a polystyrene-divinylbenzene copolymer functionalized by a strong cation exchanger presenting a high selectivity for acids (pK_a 2 - 10). It is highly stable in organic solvents.

Particle Size: 85 µm

Pore Diameter: 60 Å Surface Area: 800 m²/g pH Stability: 0 to 14 Ionic Capacity: 0,85 meq/g

Applications

- Basic Drugs & metabolites in biological fluids
- API from tablets, creams, in waste water & drinking water
- Pesticides, herbicides, fongicides & melamine from food & beverage

Cat.No	Description	pk
TR-FB034	320 Finisterre OA™ SCX SPE Columns 30mg/1ml	100
TR-FB034	322 Finisterre OA™ SCX SPE Columns 60mg/3ml	50
TR-FB034	324 Finisterre OA™ SCX SPE Columns 100mg/6ml	30
TR-FB034	326 Finisterre OA™ SCX SPE Columns 200mg/6ml	30
TR-FB034	328 Finisterre OA™ SCX SPE Columns 500mg/6ml	30

Finisterre OA™ DVB

Description:

Finisterre OA[™] DVB is a polystyrene-divinylbenzene copolymer presenting a high hydrophobicity used as reversed-phase for extraction of neutral, acidic and basic compounds in viscous matrices.

Particle Size: 85 μm Pore Diameter: 60 Å Surface Area: 1000 m²/g pH Stability: 0 to 14

Applications

- Drugs & metabolites in biological fluids
- API from tablets, creams, in waste water & drinking water
- Environmental analysis: trace of PAHs, pesticides, herbicides, phenols & PCB in water

Cat.No	Description	pk
TR-FB034	310 Finisterre OA™ DVB SPE Columns 30mg/1ml	100
TR-FB034	312 Finisterre OA™ DVB SPE Columns 60mg/3ml	50
TR-FB034	314 Finisterre OA™ DVB SPE Columns 100mg/6ml	30
TR-FB034	317 Finisterre OA™ DVB SPE Columns 200mg/6ml	30
TR-FB034	318 Finisterre OA™ DVB SPE Columns 500mg/6ml	30

Finisterre OA™ SAX

Description:

Finisterre OA^{TM} SAX is a polystyrene-divinylbenzene copolomer functionalized by a strong anion exchanger presenting a high selectivity (pK_a 2 - 8). It is highly stable in organic solvents.

Particle Size: 85 µm Pore Diameter: 60 Å Surface Area: 900 m²/g pH Stability: 1 to 14 Ionic Capacity: 0,25 meq/g

Applications

- Acidic compounds & metabolites from biological fluids & tissues
- Food additives & contaminants
- Acidic phenols
- Acidic herbicides

Cat.No	Description	pk
TR-FB0343	330 Finisterre OA™ SAX SPE Columns 30mg/1ml	100
TR-FB0343	332 Finisterre OA™ SAX SPE Columns 60mg/3ml	50
TR-FB0343	334 Finisterre OA™ SAX SPE Columns 100mg/6ml	30
TR-FB0343	336 Finisterre OA™ SAX SPE Columns 200mg/6ml	30
TR-FB0343	338 Finisterre OA™ SAX SPE Columns 500mg/6ml	30

Description:

Finisterre OATM WCX is a polystyrene-divinylbenzene copolymer functionalized by a weak cation exchanger used to catch and release strong basic compounds (pK_a >10). It is highly stable in organic solvents.

Particle Size: 85 μm Pore Diameter: 60 Å Surface Area: 800 m²/g pH Stability: 0 to 14 Ionic Capacity: 0,70 meq/g

Applications

- Strong basic compounds from biological fluids & tissues
- Streptomycin from food

Cat.No	Description	pk
TR-FB034	I340 Finisterre OA™ WCX SPE Columns 30mg/1ml	100
TR-FB034	I342 Finisterre OA™ WCX SPE Columns 60mg/3ml	50
TR-FB034	344 Finisterre OA™ WCX SPE Columns 100mg/6ml	30
TR-FB034	I346 Finisterre OA™ WCX SPE Columns 200mg/6ml	30
TR-FB034	I348 Finisterre OA™ WCX SPE Columns 500mg/6ml	30

Equivalences

Equivalences				
Teknokorma	Waters	Phenomenex	Agilent	Biotage
Finisterre OA™ HLB	Waters Oasis® HLB	Phenomenex Strata [™] - X	Agilent Bond Elut Plexa / Agilent Nexus	Biotage Evolute®ABN
Finisterre OA™ DVB	Waters Oasis® HLB	Phenomenex Strata™- X	Agilent Bond Elut PPL / Agilent SimpliQ DVB	Biotage Evolute®ABN
Finisterre OA™ SCX	Waters Oasis® MCX	Phenomenex Strata™-X-C	Agilent Bond Elut Plexa PCX / Agilent SimpliQ SCX	Biotage Evolute® CX
Finisterre OA™ SAX	Waters Oasis® MAX		Agilent SimpliQ SAX	Biotage Evolute®AX
Finisterre OA™ WCX	Waters Oasis® WCX	Phenomenex Strata™-X-CW	Agilent SimpliQ WCX	Biotage Evolute® WCX
Finisterre OA™ WAX	Waters Oasis® WAX	Phenomenex Strata™-X-AW	Agilent SimpliQ WAX	Biotage Evolute® WAX

Finisterre[™] C18 SPE 96 well plate

Retention Mechanism: Reverse phase, one of the most hydrophobic phases Functional Group: Polymerically bonded octadecyl C18 endcapped. High Capacity C18 Finisterre OA™ HI B

Description:

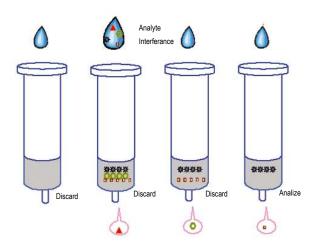
Finisterre OATM WAX is a polystyrene-divinylbenzene copolymer functionalized by a weak anion exchanger used to catch and release strong acidic compounds (pKa <2). It is highly stable in organic solvents.

Particle Size: 85 μm Pore Diameter: 60 Å Surface Area: 800 m²/g pH Stability: 1 to 14 Ionic Capacity: 0,50 meq/g

Applications

- Drugs & metabolites in biological fluids
- API from tablets, creams, in waste water & drinking water
- Environmental analysis: trace of PAHs, pesticides, herbicides, phenols & PCB in water
- Antibiotics and pesticides in food & beverage

Cat.No	Description	pk
TR-FB034	350 Finisterre OA™ WAX SPE Columns 30mg/1ml	100
TR-FB034	352 Finisterre OA™ WAX SPE Columns 60mg/3ml	50
TR-FB034	354 Finisterre OA™ WAX SPE Columns 100mg/6ml	30
TR-FB034	356 Finisterre OA™ WAX SPE Columns 200mg/6ml	30
TR-FB034	358 Finisterre OA™ WAX SPE Columns 500mg/6ml	30


Endcapped: yes Higher Carbon Load: 17.0 % Silica Base: Irregular Shape Average Particle Size: 50 µm Pore Diameter: 60 Å Hardware: Polypropylene Frit: Polyethylene 20 µm porosity

96 well plate format

Cat.No	Description	pk
TR-F0345	00 Finisterre SPE 96 w/plate C18/17% 10mg/2ml	1
TR-F0345	02 Finisterre SPE 96 w/plate C18/17% 20mg/2ml	1
TR-F0345	04 Finisterre SPE 96 w/plate C18/17% 30mg/2ml	1
TR-F0345	06 Finisterre SPE 96 w/plate C18/17% 60mg/2ml	1
TR-F0345	508 Finisterre SPE 96 w/plate C18/17% 1000mg/2ml	1

Finisterre[™] Use & Extraction Procedures

Select the different Extraction Procedures Methods:

Extraction Prodecures for Reversed Phases

Packings of Reverse Phase are composed of a silica backbone bonded with hydrocarbon chains.

Packings of Reverse Phase are used to isolate relatively non-polar compounds from a polar matrix.

Reverse Phase packings require conditioning with an organic solvent followed by an aqueous solvent prior to use.

Elution of no non polar compounds require less polar solvents, and moderataly polar compounds is accomplished with middle polarity solvents.

1. Conditioning:

Rinse packing bed with 3-5 ml of methanol followed by 3-5 ml of water or buffer (don't let packing bed dry before adding sample).

2. Sample application:

Apply sample solution to the top of the packing bed. Push or draw the sample through the bed at a flow rate of 1-5 ml/min. Collect sample for analysis if desired compound has passed through the packing bed without being retained.

3. Wash:

If the desired compound was retained, wash off any weakly retained interfering compound(s) with a polar solvent.

4. Elution:

Elute desired compound with 1-2 ml of a non-polar solvent and collect for analysis.

Extraction Prodecures for Normal Phases

Normal-phase packings are composed of a silica backbone bonded with carbon chains containing polar functional groups.

Packings of Normal Phase are used to isolate polar compounds from a non-polar matrix.

Normal Phase packings require conditioning with non polar solvents Elution is accomplished with more polar solvents.

1. Conditioning:

Rinse packing bed with 3-5 ml of non-polar solvent (don't let packing bed dry before adding sample).

2. Sample application:

Apply sample solution to the top of the packing bed. Push or draw the sample through the bed at a flow rate of 1-5 ml/min. Collect sample for analysis if desired compound has passed through the packing bed without being retained.

3. Wash:

If the desired compound was retained, wash off any weakly retained interfering compound(s) with a non-polar solvent.

4. Elution:

Elute desired compound with 1-2 ml of a polar solvent and collect for analysis.

Extraction Prodecures for Ion-Exchange

Packings of Ion Exchange are composed of different materials backbone bonded with carbon chains terminated by a negatively or positively charged functional groups.

Packings of Ion Exchange are used to isolate charged or potentially charged compounds.

Anions and cations are retained on the corresponding resin by exchanging the anion or cation in the sample with the anion or cation on the resin.

1. Conditioning:

Rinse packing bed with 3-5 ml of de-ionized water or low ionic strength buffer (e.g. 0.0001M-0.01M).

2. Sample application:

Apply sample to the top of the packing bed. Push or draw the sample through the bed at a flow rate of 1-2 ml/min. Collect sample for analysis if desired compound has passed through the packing bed without being retained.

3. Wash:

If the desired compound was retained, wash off any weakly retained interfering compound(s) with de-ionized water or low strength buffer.

4. Elution:

Elute desired compound with 1-5 ml of a high salt concentration solution (e.g. 0.1M- 0.5M) or change elution buffer pH such that the sample compound is no longer ionized and collect for analysis